If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+6025x-500=0
a = 25; b = 6025; c = -500;
Δ = b2-4ac
Δ = 60252-4·25·(-500)
Δ = 36350625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{36350625}=\sqrt{625*58161}=\sqrt{625}*\sqrt{58161}=25\sqrt{58161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6025)-25\sqrt{58161}}{2*25}=\frac{-6025-25\sqrt{58161}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6025)+25\sqrt{58161}}{2*25}=\frac{-6025+25\sqrt{58161}}{50} $
| (x)=x(x^2+3600) | | (7+x)2=14x | | 2x(2)+10=60 | | 0.3(p-4/3)=5-0.6p | | (x)=x(2x+3600) | | -3/8p=6 | | 2+b-7=89 | | 8s+3912-7s)=49 | | 180=46w | | 3÷10x+1,4=-x+2 | | 10k+-3=6k-15 | | 7^2t=3^5 | | k=-11 | | 6w+-12=12 | | 2y(2y-3)-2y(y-4)=14 | | 1/2x+3/4=3(1/3x+4) | | -28=3m+-42 | | 5x^2+3x+10=14 | | 4+3x-7=60-2x-13 | | 4(-3x+6)=-15x-2 | | 1t(t+1)=2t | | 1x+35=-8 | | x^2+6x+3=19 | | 20^x+7=35 | | 10*730000x=307.7 | | (3+5)/4=x(7-8)/3 | | 7x-4=2x+25 | | 3(-2x+2)=-4 | | 7-3(6x-4)=3 | | 3(s-16)-2(s-2)=50 | | -10=9p | | 6(9x-5)=-9x |